Thermoelectrics Laboratory (2024)

Solar thermoelectric generator—A model of solar thermoelectric generator is analyzed based on the concept of converting the thermal energy into electricity. A recent paper on solar thermoelectric generator reported a highest efficiency of 4.6%, in which the system had a vacuum glass in this enclosure, flat panel (absorber), thermoelectric generator and water circulation for cold side. A validation was applied which was in good agreement with this paper. Seeking to raise the efficiency; a same model but using a heat sink instead of water circulation, and applying Lee’s theory of optimal design using dimensionless parameters will be added in the system. Then, a new design using three segmented elements will be applied. A numerical simulation using ANSYS software will be created in all models for comparing with analytical solutions.

Thermoelectric generators for low grade waste heat recovery—This project focuses on using the technology of thermoelectrics for liquid-to-liquid, low-grade waste heat recovery (low temperature). Design and construction of a system of thermoelectric generator modules to convert waste heat into electricity hoping to decrease power generation cost.

Optimal design of thermoelectric cooling and heating for car seat climate control—Optimal design of a thermoelectric device is studied analytically using Dr. Lee’s newly developed optimization method based on the thermoelectric ideal equations along with dimensional analysis technique in order to improve the performance of the thermoelectric device in terms of the cooling and heating power and the coefficient of performance.

Thermoelectric generator for automotive exhaust waste heat recovery system—Design an analytical modeling along with experimental validation on the thermoelectric system that is used to convert part of the waste heat into usable electrical power hoping to reduce the exhaustion of energy and the environment pollution.

Miniature thermoelectric devices—This project presents the consideration of the contact resistance in miniature thermoelectric module farther progress in the development of short-legged thermoelectric micro modules for the cooling of high power density electronic components.

Thermoelectrics of nanostructures—To design a generic model to calculate the Figure of Merit (ZT) value of nanostructures in all the 3 dimensions; i.e. 1-D, 2-D and 3-D and in different types of materials. Also to estimate the effect of ZT on the behavior of electrons and photons.

Impact of Thomson Effect on thermoelectrics materials while varying leg length—A study is made based on the Thomson Effect of thermoelectric materials to compare the total efficiency calculated experimentally and analytically while using different parameters to base the study on. A comparison is made with the Thomson Effect involved and with only the ideal equations to determine its effect in practical applications.

Past projects

Studying the optimum design of automotive thermoelectric air conditioning—This work utilizes a newly developed optimal design theory and dimensional analysis technique, which allows for optimization of thermoelectric parameters simultaneously. Applying this method on a unit cell located at the center of the TEAC system provides a simple way to study the optimum design and its feasibility; however, further studies are needed to simulate the optimum design of an entire TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures).

Effective material properties method in determining the performance of commercial thermoelectric modulesThis work examines the validity of formulating the effective thermoelectric material properties as a way to predict thermoelectric module performance. The three maximum parameters (temperature difference, current, and cooling power) of a thermoelectric cooler were formulated on the basis of the hot junction temperature. Then, the effective material properties (Seebeck coefficient, electrical resistance, and thermal conductivity) were defined in terms of the three maximum parameters that were taken from either a commercial thermoelectric cooler module or the measurements. It is demonstrated that the simple standard equation with the effective material properties predicts well the performance curves of the four selected commercial products. Normalized parameters over the maximum parameters were also formulated to present the characteristics of the thermoelectric coolers along with the normalized charts. The normalized charts would be universal for a given thermoelectric material.

Ph.D. projects

Optimum design of automotive thermoelectric air conditioning

Thermoelectrics Laboratory (1)

Senior design projects

Exhaust heat thermoelectric generator

Thermoelectrics Laboratory (2)
Thermoelectric generator

Thermoelectrics Laboratory (3)
Solar thermoelectric generator

Thermoelectrics Laboratory (4)

Undergraduate projects as part of coursework

Thermal behavior of an electrical wire—When an electrically insulated stranded wire is subjected to a DC current, heat is generated in the wire, simultaneously dissipating into ambient air due to natural convection and radiation. The wire is anticipated to reach a steady-state temperature. The purpose of this project is an experimental and analytical study that includes the computer simulations on the thermal behavior of the electrical wire. An 18 gauge wire is laid horizontally up in the quiescent ambient air and subjected to three different assigned DC currents separately. The project is divided into three parts: analytical modelling, experimental data and numerical computations.

Thermoelectrics Laboratory (5)

Double pipe heat exchangerThe device most frequently used for transfer of energy (heat) is the heat exchanger. A heat exchanger effects the heat transfer from one fluid to another. There are many types of heat exchangers, including double pipe, shell and tube, cross flow, and plate and frame. Specific applications may be found in space heating and air-conditioning, power production, waste heat recovery and chemical processing. In this project, we consider two types of heat exchangers: double pipe heat exchanger and shell and tube heat exchanger. This project is divided into three parts: experimental data, analytical solution and numerical simulations.

Thermoelectrics Laboratory (2024)

References

Top Articles
Nederland CO Real Estate - Nederland CO Homes For Sale | Zillow
Nederland CO Single Family Homes For Sale - 35 Homes | Zillow
Umbc Baseball Camp
Truist Bank Near Here
Www.1Tamilmv.cafe
Compare Foods Wilson Nc
Pangphip Application
Mylaheychart Login
라이키 유출
Gameday Red Sox
New Day Usa Blonde Spokeswoman 2022
Braums Pay Per Hour
Our Facility
4302024447
Chris Hipkins Fue Juramentado Como El Nuevo Primer Ministro De...
4156303136
How To Cut Eelgrass Grounded
How Much Are Tb Tests At Cvs
Illinois Gun Shows 2022
U Break It Near Me
Is The Yankees Game Postponed Tonight
Selfservice Bright Lending
Kaitlyn Katsaros Forum
Used Safari Condo Alto R1723 For Sale
Mega Personal St Louis
Craigslist Apartments Baltimore
What Time Does Walmart Auto Center Open
Accuweather Minneapolis Radar
Shoe Station Store Locator
2021 MTV Video Music Awards: See the Complete List of Nominees - E! Online
Temu Seat Covers
Tactical Masters Price Guide
Kristy Ann Spillane
Why comparing against exchange rates from Google is wrong
Lininii
Parent Management Training (PMT) Worksheet | HappierTHERAPY
Mark Ronchetti Daughters
Aladtec Login Denver Health
Kips Sunshine Kwik Lube
Tal 3L Zeus Replacement Lid
Plead Irksomely Crossword
Sunrise Garden Beach Resort - Select Hurghada günstig buchen | billareisen.at
Bernie Platt, former Cherry Hill mayor and funeral home magnate, has died at 90
Wait List Texas Roadhouse
Verizon Outage Cuyahoga Falls Ohio
Ursula Creed Datasheet
Mychart University Of Iowa Hospital
Sc Pick 3 Past 30 Days Midday
15:30 Est
Diamond Spikes Worth Aj
When Is The First Cold Front In Florida 2022
Www.card-Data.com/Comerica Prepaid Balance
Latest Posts
Article information

Author: Aron Pacocha

Last Updated:

Views: 6572

Rating: 4.8 / 5 (48 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Aron Pacocha

Birthday: 1999-08-12

Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

Phone: +393457723392

Job: Retail Consultant

Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.